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ON A STATISTIC ARISING IN TESTING CORRELATION

Walter Kristof

Summary

This paper is devoted to the study of a certain statistic, u , defined

on samples from a bivariate population with variances cr11 , a22
and cor-

relation p . Let the parameter corresponding to u be u . Under

binormality assumptions the following is demonstrated. (1)
If all a22 '

then the distribution of u can be obtained rapidly from the F distribu-

tion. Statistical inferences about p = u may be based on F . (ii) In

the general case, allowing for u
11 22 '

a certain quantity involving u ,
'

r (sample correlation between the variables) and u follows a t distribu-

tion. Statistical inferences about u may be based on t . (iii) In the

general case a quantity t' may be constructed which involves only the

statistic u and only the parameter u . If treated like a t distributed

magnitude, t' admits conservative statistical inferences. (iv) The F

distributed quantity mentioned in (i) is equivalent to a certain t distrib-

uted quantity as follows from an appropriate transformation of the variable.

(v) Three test statistics are given which can be utilized in making statistical

inferences about p = u in the case u
11

=
22

. A comparison of expected

lengths of confidence intervals for p obtained from the three test statistics

is made. (vi) The use of the formulas derived is illustrated by means of an

application to coefficient alpha.



ON A STATISTIC ARISING IN JESTING CORRELATION)

1. Introduction

A paper by Mehta and Gurland (1969) motivated the present study.

These authors derived the distribution of a certain statistic, u , defined

on samples from a bivariate normal population. They utilized this statistic

in estimating the difference of the means of two binormally distributed

variables when some of the observations corresponding to one of the variables

are missing.

Let X
1

, X 2 be binormally distributed variables with variance-

covariance matrix E 110-..11 . Let S = hs..11 be the matrix of sample
13 13

second moments. The statistic u is defined as

(1) u

2s
12

s
11

+ s
22

The corresponding parameter is

(2) U =
2g

12

-11 + (722

Evidently, 0 < Q
2

< 1 and 0 < u
2

1 . Let p be the correlation between

X
1

and X
2

. If g
11

= a
22 ,

then p = u and p = u is the maximum-

likelihood estimator of p o We will assume that u
2

/ 1 , i.e., X2 / + Xi

+ const.

1This research was supported by the National Institute of Child Health
and Human Development, under Research Grant 1 P01 HD01762.
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The main purpose of this paper consists in deriving means for making

statistical inferences about u under the conditions 011 = 022
and

all 022
An application of the results to coefficient alpha will be

appended by way of illustration. A more detailed description is contained

in the summary.

(3)

2. The Case 011 . 22

Set 011 = 22
= g

2
and make a transformation of variables:

Y1 =X1 - X2

Y
2
=X

1
+ X

2

The new variables are again binormally distributed with variance-covariance

oatrix E* = Matil say. Explicitly,
ij

(L.) all = 2g
2
(1 - p)

0*2? = 202 (1 + p)

oil 0
12

Let S* = Mst
j

M be the matrix of new sample second moments. Evidently,
i

(5) stl sll
522

2512 (sli 522)(1 u)

522 =
sil s22 2s12 = (s

11
+ s

22
)(1 + u) .

We have oil /o22/a*
2 1

= (1 - p) /(l + p) and s*
1 2
/s*

2
= (1 - u) /(l + u) . Hence

the quantity
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(6)
1 - p 1 + u
+ p 1 - u

follows an F distribution with dfl = df2 = N - 1 , N indicating sample

size. It would be a simple matter to obtain the distribution of u explicitly

from the F distribution by making substitution (6) and using the differential

(7) dF 1 P
2du

1 + P t-
(1 - u)2

This derivation is more elementary and speedier than approaches starting from

th3 Wishart distribution of sample second moments s.. .

The F test provides a familiar means of testing the homogeneity of two

random independent sample variances under normality conditions. A hypothesis

Ho: u = p = po is equivalent to homogeneity of sti/(1 - po) and 522/(1 + po) ,

the common parameter being 262 . It follows from (5) that quantity (6) can be

employed in testing Ho . Of course, confidence intervals for p may also be

established by using F

Rao (1952, p. 226) suggests the likelihood ratio criterion, L , for test-

ing homogeneity of variances when any knowledge as to the possible relation-

ship between the two population variances is missing. In the present context,

this amounts to the absence of nontrivial knowledge concerning bounds for p .

One obtains

(8)

2

0-1 1(1 P0)(1 - u
2

)

1 p
0
u

2
For large samples, the quantity -22,11L is distributed as x with df = 1 .



3. The General Case

We admit now
all / a22 The derivations of the previous section do

not generalize to the present case. Instead we will adapt a recent develop-

ment of the sampling theory of reliability estimation by Kristof (1970).

Using u as defined in (2), we make the following transformation of

variables:

(9) Y1 = - u+ /1+ u)x1+ - u - J1 + u)x2

y2 = (,/i u -11+ u)xi+ (11 - u+,/l+ u)x2 .

The determinant of the transformation matrix is /4 - u
2

. This value is

different from zero since u
2

,L 1 . The new variables Y
1

, Y
2

are again

binormally distributed with variance-covariance matrix E = 110-.11 , say.
a.j

Explicitly,

(10) all = 2(1 + - u2)g11 + 2(1 - J1 - u2)0-22
2

) _ 4u0-12

-a*
22

2(1 - u
2
)g
11

+ 2(1 + J1 u
2)a22

4u0-12

a*
12

= 2[20-12 - u(all
a22)] 0 by (2).

Hence the correlation between variables Y
1

and Y
2

is zero.

Let S* = Ilsijl be the matrix of new sample second moments. The quanti-

ties
j

sib obtained from the original sample second moments sa... by sub-

stitutionstitution of s. and sa...
j 3 13

for at. and g.. , respectively, in equations
13 1

(10).

/

Let us consider a hypothesis H0: u = uo with uo / 1 . Validity of

H
0

is equivalent to Y
1

and Y
2

being uncorrelated when u
0

is used in (9).
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The t test provides a familiar means of testing a zero correlation between

binormally distributed variables. Under Ho the quantity

s*
12

(11) t - IN - 2

j/s*
1

s* - s12

follows

1 22 12

follaws a t distribution with df = N - 2 . In terms pf the original

sample second moments,

(12) t -
u u

0 r
- 2

-
o

1 - r2
2

where r = s
12

Ais
11

s
22

is the sample correlation coefficient.

The derivation of expressions (10) does not depend on distributional

assumptions. Binormality was used in giving (11) and its equivalent (12).

However, the permutation distribution of a sample correlation coefficient

virtually coincides with its normal-theory distribution when the population

correlation coefficient is zero (Gayen, 1951). One may therefore expect

that the proposed t test (12) "will be reasonably powerful for a wide

range of alternatives approximating normality" and, in the absence of bi-

normality, remain "in fact very accurate even for small n [sample size]"

(Kendall & Stuart, 1961, pp. 473-476).

Of course, the construction of confidence intervals for u may also

be based on (12) when u and r are given.

Application of formula (12) requires knowledge of both u and r .

Let us consider the situation when just u is given and inferences concern-

ing u are to be made.
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2 /

Suppose we wish to test a hypothesis 110: u = uo with uo t 1 .

Again validity of ho is equivalent to Yi and Y2 being uncorrelated

when u
0

is used in (9), p* = 0 . In analogy to the definition of u we

introduce under H
0

the new statistic

2s* u - u
12 0

(15) u* -
s* + s* U- U
11 22 0

Now we have reduced the problem to the following. We are to test a hypoth-

esis H*. p* 0 on the basis of the "observed" value u* . Unfortunately,

the distribution of u* under q depends on the unknown ratio cr*
11 2

as may be seen from formulas (18) and (19) in Mehta and Gurland (1969).

Let us determine the set of all possible sample correlation coefficients

r* that are compatible with a given value u* when s*
11' 2

s*
2
> 0 . A

coefficient r* is compatible with a given u* precisely when there are

numbers a,b > 0 and c such that u* = 2c/(a + b) , r* c/,513 and

ab - c
2
> 0 . It is a rather simple matter to show that (i) u* = 0 is

equivalent to r* = 0 , (ii) for u* / 0 given, all compatible r* have

the sign of u* and satisfy precisely lu*I < Ir*I < 1 . Hence the

absolutely smallest r* compatible with a given u* is u* itself.

It follows that the quantity

(14) t' - /N - 2

- u*2

u - u
o JN- 2

u2)(1
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may be used for testing Ho: u = uo when it is treated like a t distributed

magnitude with df - N - 2 . This procedure will be conservative in the sense

that it will be harder to reject Ito than when both u and Irl % 0 are

given and (12) is invoked. We will always have It'l < RI The relation

between t and t' is found to be

\2

(sll s22)
(15) t = t' 1 +

2
4(slis22 - sl2)

The radicand depends on both the difference s
11

- s
22

and the determinant

Isl

4. Further Discussion of the Case
11

=
22

In the psychometric literature the division of a test into two parallel

parts
gll

( g22 correlation p between parts) has received particular
'

interest presumably because the reliability p
t

of the total test is then a

simple monotonic function of p alone, namely, pt = 2p(1 + p)
-1

. Statistical

inferences about pt may be based upon statistical inferences concerning p .

The assumption gil = 22 is evidently equivalent to u = p and, as

follows from (10), also to 0*
11 12 The results of sections 2 and 3

provide us now with at least three different formulas that may be used when

inferences about p in the case =
22 are sought. These are:

1 - p 1 + u
(6)

1 + p 1 - u
df

1
= df

2
= N - 1

(12') t - u p
1/N - 2 df = N - 2

ull
p2 r2



(14,) t'
u - p

/(1 u2)(1 - p2)

-8-

N - 2 df = N 7 2

A fourth formula follows from a result first obtained by De Lury (1938) and

rederived by Mehta and Gurland (1969). These authors showed that, when

p = 0 and cril
(122

, the distribution of u based on N pairs of

observations is the same as that of r corresponding to N + 1 pairs of

observations. This result may be applied to u* as defined in (13) when

p* = 0 , a*
11 2

= o*
2

are taken into account. We get

(16) t= u - p
JN - 1 df = N 1

u2)(1 p2)

Let us compare formulas (6), (12'), (14') and (16) in terms of the

expected length of confidence intervals with equal tail probabilities for

p at a fixed level when
X11 (122

First of all, we have the result that (6) and (16) are equivalent.
1 i.

This is a consequence of the fact that 2 ln2(F-- - F2) is a t distributed

quantity with df = n when F follows an F distribution with df
1

= df
2

=

n . Hence we need not distinguish between (6) and (16).
2

Secondly, (16) is uniformly better than (14'). When t is obtained

from (16), we have not only always < Itl but the number of degrees

of freedom also favors (16).

2
A proof of the mentioned relation between t and F follows at once

from a simple transformation of the variable in the density function of t .

The author wishes to thank Professor Ingram Olkin, Department of Statistics,
Stanford University, for pointing out that another proof was given earlier
by Cacoullos (1965). Cacoullos also reported formula (16).

_10
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Thirdly, it has already been said in the previous section that (12')

is uniformly better than (14').

Finally, we have to compare (12') and (16). In terms of the starred

quantities of the previous section we may write (12') in the form

2 -I
t = r*(1 - r* ) 2(N - 2)2 , df = N - 2 , and (16) as t = u*(1 u

(N - 1)2 , df = N - 1 , both when p* = 0 ,

711 722
Under these

parameter conditions the previously cited result by De Lury and Mehta/Gurland

tells us that the expected length of confidence intervals for p will be

uniformly shorter when (16) rather than (12') is used.

Thus (16) or, equivalently, (6) is best. Next comes (12') and (14')

is last. It is seen that, for N becoming large, the discrepancies between

these formulas tend to vanish when
°11 722

On the other hand, when ull / u
22 is admitted, we preferably use (12).

Resort will be taken to (14) when r is not available. We must remember

that (12) and (14) involve u instead of p in distinction to (12') and

(14'). It follows from (17) that
711 / 722

blocks (12) from approaching

(14) even when N becomes large.

5. An Application

One possible use of u occurs in psychometric theory. Suppose that a

psychological test has been divided into two parts with covariance matrix

= 110-.1 and binormal score distribution. Coefficient a based upon this

division is defined as

(17) 12 2u
-

X12
u + u

22
+ 2u

12
1 + u

11
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This coefficient is a lower bound for the reliability pt of the total test.

Novick and Lewis (1967).have shown that it coincides with the reliability

precisely when the parts of the total test are essentially T -equivalent.

Consequently, it is generally regarded as a useful quantity in psychometrics.

Let S = Ms
ij

be an observed covariance matrix. Then the statistic

4s
(18) -

12

s
11

+ s
22

+ 2s
12

2u
1 + u

is the maximum-likelihood estimator of a .

We wish to introduce a and a as given in (17) and (18) in expres-

sions (12), (14) and (16). This results in

(19) t -
a - a

/N - 2
a di - a r2

df = N - 2

(20) t*
- a IN - 2 df = N - 2

2/(1 - 6)(1 - a)

a
Pt

(21) t - - 1 df = N - 1

2j(1 - a)(1 - pt)

These formulas can be used in testing point hypotheses concerning a or pt ,

respectively, and in determining confidence intervals for a or pt . Formula

(19). was derived earlier by Kristof (1970).

Let us consider a numerical example. From data reported by Lord and

Novick (1968, p. 156) one determines for two content-equivalent tests

a = 0.9684 , r = 0.9502 with N = 10 . This example was used by Kristof

(1970). We wish to establish confidence intervals for a or pt of the



composite test at the level p = 1% with equal tail probabilities. The

boundaries of the intervals will be designated U (I) and U(2) or p
t

(1)

(
and

P
respectively.

2y
'

When the parts are not necessarily regarded as parallel, then the use

of (19) is indicated. One obtains U(1) = 0.9950, U(2) = 0.7999 Now

suppose that the observed correlation between the parts was not reported.

In this situation we will employ (20). This gives U(1) = 0.9958 ,

a
(2)

0.7632 .

Finally, assume the parts to be parallel. The confidence interval will

( (
be determined by means of (21). One arrives at p

t

1)
= 0.9952 , p

t

2)
= 0.7933 .

We see that in a given case a confidence interval calculated by means of (21)

need not be shorter than if it were obtained from (19) although, as follows

from section 4, the opposite relation holds for the expected lengths of such

intervals when
X11 = (3'22

It will be noted that the familiar Spearman-Brown formula involving an

observed r has never emerged regardless of how a split of a test into two

parts is made. Its place is taken by u as is seen from (18).
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